__EXCLUSIVE__ Download Superfoods That Promote Anti Aging Pdf
Antioxidants came to public attention in the 1990s, when scientists began to understand that free radical damage was involved in the early stages of artery-clogging atherosclerosis. It was also linked to cancer, vision loss, and a host of other chronic conditions. Some studies showed that people with low intakes of antioxidant-rich fruits and vegetables were at greater risk for developing these chronic conditions than were people who ate plenty of those foods. Clinical trials began testing the impact of single substances in supplement form, especially beta-carotene and vitamin E, as weapons against chronic diseases.
Download Superfoods That Promote Anti Aging pdf
Randomized placebo-controlled trials, which can provide the strongest evidence, offer little support that taking vitamin C, vitamin E, beta-carotene, or other single antioxidants provides substantial protection against heart disease, cancer, or other chronic conditions. The results of the largest trials have been mostly negative.
High-dose antioxidant supplements can also interfere with medicines. Vitamin E supplements can have a blood-thinning effect and increase the risk of bleeding in people who are already taking blood-thinning medicines. Some studies have suggested that taking antioxidant supplements during cancer treatment might interfere with the effectiveness of the treatment. Inform your doctor if starting supplements of any kind. [1]
Epidemiological prospective studies show that higher intakes of antioxidant-rich fruits, vegetables, and legumes are associated with a lower risk of chronic oxidative stress-related diseases like cardiovascular diseases, cancer, and deaths from all causes. [30-33] A plant-based diet is believed to protect against chronic oxidative stress-related diseases. [2] It is not clear if this protective effect is due to the antioxidants, other substances in the foods, or a combination of both. The following are nutrients with antioxidant activity and the foods in which they are found:
Prevention is the best and most effective way to work against extrinsic skin aging effects. The best prevention strategy against the harmful action of free radicals is a well regulated lifestyle (caloric restriction, body care and physical exercise for body), with low stress conditions and a balanced nutritional diet, including anti-oxidative rich food.
In a review of topical methods to counteract skin wrinkling and irregular pigmentation of aging skin, Bayerl evaluates the effects of vitamin A acid derivatives, chemical peeling and bleaching agents. Also, the effects of UV protection by using sunscreens and topical antioxidants are reviewed.52 The topical retinoid treatments inhibit the UV-induced, MMP-mediated breakdown of collagen and protect against UV-induced decreases in procollagen expression.53-55
Chang et al. also suggest an association between skin aging and levels of 25(OH)D3, another precursor of vitamin D. It may be possible that low 25(OH)D3 levels in women, who show less skin aging may reflect underlying genetic differences in vitamin D synthesis.62
Laboratory studies of different polyphenols such as, green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, conducted in animal models on UV-induced skin inflammation, oxidative stress and DNA damage, suggested that these polyphenols, combined with sunscreen protection, have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers.72 The underlying mechanism of polyphenols actions has been a major discussion over the last decades. One of the most abundant theories is that the cells respond to polyphenols mainly through direct interactions with receptors or enzymes involved in signal transduction, which may result in modification of the redox status of the cell and may trigger a series of redox-dependent reactions.73,74 As antioxidants, polyphenols may improve cell survival; as prooxidants, they may induce apoptosis and prevent tumor growth.69,75 However, the biological effects of polyphenols may extend well beyond the modulation of oxidative stress.69
Blueberries are an iconic summer superfood filled with fiber, vitamin K and vitamin C. Blueberries also have antioxidant phytonutrients called anthocyanins, which are nutrients that help neutralize free radical damage to cells.
A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies.
The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values.
This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet.
The antioxidant measurements have been conducted over a period of eight years, from 2000 to 2008. The samples were procured from local stores and markets in Scandinavia, USA and Europe and from the African, Asian and South American continents. Many of the samples of plant material, like berries, mushrooms and herbs, were handpicked. Commercially procured food samples were stored according to the description on the packing and analyzed within four weeks. Handpicked samples were either stored at 4C and analyzed within three days or frozen at -20C and analyzed within four weeks. Products that needed preparation such as coffee, tea, processed vegetables etc. were prepared on the day of analysis. Furthermore, all samples were homogenized, dry samples were pulverized and solid samples were chopped in a food processor. After homogenizing, analytical aliquots were weighed. Included in the database are 1113 of the food samples obtained from the US Department of Agriculture National Food and Nutrient Analysis Program. They were collected, homogenized, and stored as previously described [17]. Three replicates were weighed out for each sample. All samples were extracted in water/methanol, except vegetable oils which were extracted in 2-propanol and some fat-rich samples which were extracted in water/2-propanol. The extracts were mixed, sonicated in ice water bath for 15 min, mixed once more and centrifuged in 1.5 mL tubes at 12.402 g for 2 min at 4C. The concentration of antioxidants was measured in triplicate of the supernatant of the centrifuged samples.
The FRAP assay of Benzie and Strain [13] was used with minor modifications that allowed quantification of most water- and fat-soluble antioxidants [16, 17]. A Technicon RA 1000 system (Technicon instruments corporation, New York, USA) was used for the measurements of absorption changes that appear when the TPTZ-Fe3+ complex reduces to the TPTZ-Fe2+ form in the presence of antioxidants. An intense blue color with absorption maximum at 593 nm develops. The measurements were performed at 600 nm after 4 min incubation. An aqueous solution of 500 μmol/L FeSO4 7 H2O was used for calibration of the instrument. Validation of the assay is described in Halvorsen et al. 2002 [17]. Briefly, the within-day repeatability measured as relative standard deviation (RSD) in standard solutions ranged from 0.4% to 6%. The between-day repeatability was
Our results show large variations both between as well as within each food category; all of the food categories contain products almost devoid of antioxidants (Table 1). Please refer to Additional file 1, the Antioxidant Food Table, for the FRAP results on all 3139 products analyzed. The categories "Spices and herbs", "Herbal/traditional plant medicine" and "Vitamin and dietary supplements" include the most antioxidant rich products analyzed in the study. The categories "Berries and berry products", "Fruit and fruit juices", "Nuts and seeds", "Breakfast Cereals", "Chocolate and sweets", "Beverages" and "Vegetables and vegetable products" include most of the common foods and beverages which have medium to high antioxidant values (Table 1). We find that plant-based foods are generally higher in antioxidant content than animal-based and mixed food products, with median antioxidant values of 0.88, 0.10 and 0.31 mmol/100 g, respectively (Table 1). Furthermore, the 75th percentile of plant-based foods is 4.11 mmol/100 g compared to 0.21 and 0.68 mmol/100 g for animal-based and mixed foods, respectively. The high mean value of plant-based foods is due to a minority of products with very high antioxidant values, found among the plant medicines, spices and herbs. In the following, summarized results from the 24 categories are presented.
In the category "Beverages", 283 products were included, from coffee and tea to beer, wine and lemonades. Dry products like coffee beans and dried tea leaves and powders were also included. The highest antioxidant values in this category were found among the unprocessed tea leaves, tea powders and coffee beans. In Table 2 we present an excerpt of this category and of the analyses of fruit juices. Fifty-four different types of prepared coffee variants procured from 16 different manufacturers showed that the variation in coffees are large, ranging from a minimum of 0.89 mmol/100 g for one type of brewed coffee with milk to 16.33 mmol/100 g for one type of double espresso coffee, the highest antioxidant value of all prepared beverages analyzed in the present study. Other antioxidant rich beverages are red wine, which have a smaller variation of antioxidant content (1.78 to 3.66 mmol/100 g), pomegranate juice, prepared green tea (0.57 to 2.62 mmol/100 g), grape juice, prune juice and black tea (0.75 to 1.21 mmol/100 g) (Table 2). Beer, soft drinks and ginger ale contain the least antioxidants of the beverages in our study, with drinking water completely devoid of antioxidants. 041b061a72